210 research outputs found

    An enhanced synchronized multi-channel MAC scheme to improve throughput in VANET

    Get PDF
    The development of autonomous driving and intelligent transportation demands, fast, reliable and efficient data transmission for various applications in vehicular ad hoc network (VANET). This poses great challenges to the design of a media access control (MAC) protocol that can adapt to the frequent topological shifts. IEEE 1609.4 defines the multi-channel MAC layer implementation in VANET. The multi-channel operation works on a fixed synchronization interval that alternates between a control channel and service channels. The fixed interval leads to poor utilization of limited spectrum resources. In this paper, a multi-channel reliable MAC protocol (MCRMAC), that uses both the control channel and service channel irrespective of the interval to ensure proper and efficient throughput utilization in VANET is proposed. The simulations reveal the performance of the proposed scheme and it outperforms IEEE 1609.4 in terms of throughput

    Dissection of Organs from the Adult Zebrafish

    Get PDF
    Over the last 20 years, the zebrafish has become a powerful model organism for understanding vertebrate development and disease. Although experimental analysis of the embryo and larva is extensive and the morphology has been well documented, descriptions of adult zebrafish anatomy and studies of development of the adult structures and organs, together with techniques for working with adults are lacking. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location during the larval to adult transition. Externally, the transparent larva develops its characteristic adult striped pigment pattern and paired pelvic fins, while internally, the organs undergo massive growth and remodeling. In addition, the bipotential gonad primordium develops into either testis or ovary. This protocol identifies many of the organs of the adult and demonstrates methods for dissection of the brain, gonads, gastrointestinal system, heart, and kidney of the adult zebrafish. The dissected organs can be used for in situ hybridization, immunohistochemistry, histology, RNA extraction, protein analysis, and other molecular techniques. This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems

    Ricinus communis and Calotropis procera As Putative Plant Species for the Phytostabilization of Tannery Contaminated Soil: A Dynamic Approach

    Get PDF
    The present study involves the assessment of four metals (Cr, Pb, Cu, and Mn) and their mobility (primary and dynamic translocation and bioconcentration factors) in Ricinus communis and Calotropis procera growing in tannery contaminated soil (TCS) and control soil (CS). The area is moderately to strongly contaminated withCr. Except for Cr, all the analyzed metals were found within the critical range in TCS and in both plants. The assessment of both primary and dynamic translocation and bioconcentration factors showed TF < 1 and BCF > 1 for both plants, which demonstrates the major transfer and accumulation of Cr from soil to root. As these plants are not grazed upon by grazing animals, the ecological metal transfer risks from these plants are quite low. Moreover, the high commercial importance of these plants (biofuel production and medicinal value) further enhances their utilization for the phytostabilization of moderately Cr-contaminated sites. Keywords: chromium, Ricinus communis, Calotropis procera, dynamic factors, tannery industr

    Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress

    Get PDF
    The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems

    Evolving feature model configurations in software product lines

    Get PDF
    The increasing complexity and cost of software-intensive systems has led developers to seek ways of reusing software components across development projects. One approach to increasing software reusability is to develop a software product-line (SPL), which is a software architecture that can be reconfigured and reused across projects. Rather than developing software from scratch for a new project, a new configuration of the SPL is produced. It is hard, however, to find a configuration of an SPL that meets an arbitrary requirement set and does not violate any configuration constraints in the SPL. Existing research has focused on techniques that produce a configuration of an SPL in a single step. Budgetary constraints or other restrictions, however, may require multi-step configuration processes. For example, an aircraft manufacturer may want to produce a series of configurations of a plane over a span of years without exceeding a yearly budget to add features. This paper provides three contributions to the study of multi-step configuration for SPLs. First, we present a formal model of multi-step SPL configuration and map this model to constraint satisfaction problems (CSPs). Second, we show how solutions to these SPL configuration problems can be automatically derived with a constraint solver by mapping them to CSPs. Moreover, we show how feature model changes can be mapped to our approach in a multi-step scenario by using feature model drift. Third, we present empirical results demonstrating that our CSP-based reasoning technique can scale to SPL models with hundreds of features and multiple configuration steps.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía TIC-590

    Characterization of Selenium Accumulation, Localization and Speciation in Buckwheat–Implications for Biofortification

    Get PDF
    Buckwheat is an important crop species in areas of selenium (Se) deficiency. To obtain better insight into their Se metabolic properties, common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) were supplied with different concentrations of Se, supplied as selenate, selenite, or Astragalus bisulcatus plant extract (methyl-selenocysteine). Se was supplied at different developmental stages, with different durations, and in the presence or absence of potentially competing ions, sulfate, and phosphate. The plants were analyzed for growth, Se uptake, translocation, accumulation, as well as for Se localization and chemical speciation in the seed. Plants of both buckwheat species were supplied with 20 μM of either of the three forms of Se twice over their growth period. Both species accumulated 15–40 mg Se kg−1 DW in seeds, leaves and stems, from all three selenocompounds. X-ray microprobe analysis showed that the Se in seeds was localized in the embryo, in organic C-Se-C form(s) resembling selenomethionine, methyl-selenocysteine, and γ-glutamyl-methylselenocysteine standards. In short-term (2 and 24 h) Se uptake studies, both buckwheat species showed higher Se uptake rate and shoot Se accumulation when supplied with plant extract (methyl-selenocysteine), compared to selenite or selenate. In long-term (7 days) uptake studies, both species were resistant to selenite up to 50 μM. Tartary buckwheat was also resistant to selenate up to 75 μM Se, but &gt;30 μM selenate inhibited common buckwheat growth. Selenium accumulation was similar in both species. When selenite was supplied, Se levels were 10–20-fold higher in root (up to 900 mg Se kg−1 DW) than shoot, but 4-fold higher in shoot (up to 1,200 mg Se kg−1 DW) than root for selenate-supplied plants. Additionally, sulfate and phosphate supply affected Se uptake, and conversely selenate enhanced S and P accumulation in both species. These findings have relevance for crop Se biofortification applications

    Plant Growth Promoting Bacteria Improve Growth and Phytostabilization Potential of Zea Mays under Chromium and Drought Stress by Altering Photosynthetic and Antioxidant Responses

    Full text link
    Drought in heavy metal polluted arid and semiarid regions severely inhibits the plant growth and phytoremediation potential by affecting photosynthesis, antioxidant defense mechanism, and other biochemical processes. In the present study, we explored the role of plant growth-promoting bacteria (PGPB) on Zea mays growth and phytoremediation efficiency in Chromium (Cr) contaminated soils under drought stress by assessing plant stress tolerance, photosynthetic gas exchange activities, chlorophyll fluorescence, and Cr accumulation. Two efficient Cr and drought resistant PGPB with the potential to reduce Cr(VI) to Cr(III) and produce plant growth-promoting metabolites even under Cr, drought, or Cr+drought stress conditions were isolated and identified as Providencia sp. (TCR05) and Proteus mirabilis (TCR20). In pot experiments, the inoculation of TCR05 and TCR20 increased the plant growth, pigments, protein, phenolics, and relative water content and decreased the lipid peroxidation, proline, and superoxide dismutase activity under Cr, drought, or Cr+drought conditions. Irrespective of stress treatment, TCR05 and TCR20 also improved plant photosynthetic efficiency by increasing the CO2 assimilation rate, stomatal conductance to water vapor, transpiration rate, maximum quantum efficiency of PSII, actual quantum efficiency of PSII, electron transport rate, photochemical quenching, reducing the internal CO2 concentration and non-photochemical quenching. Besides, the PGPB decreased the translocation of Cr through immobilization of Cr in root. These results denoted that strains TCR05 and TCR20 could be a capable bio-inoculant for improving plant growth and phytostabilization practices in Cr contaminated sites even under water-limited conditions. © 2021 The Authors.North Carolina Central University, NCCU; Department of Science and Technology, Ministry of Science and Technology, India, डीएसटी: INT/RUS/RFBR/363; Science and Engineering Research Board, SERB; Russian Foundation for Basic Research, РФФИ: L.B.B thankful to the Science and Engineering Research Board (SERB), India for providing National Post-Doctoral Fellowship (Grant No. PDF/2017/001074 ). A.K., T, and M.R. are grateful for the “ Department of Science and Technology (DST), India (Project No. INT/RUS/RFBR/363 ) and Russian Foundation for Basic Research, Russia (Project No. 19-516-45006) bilateral research grant”. A.K. acknowledge the work support by Russian Science Foundation (Project No. 21-76-00011). Many thanks to Benedict Analin from the Department of Life Sciences, Central University of Tamil Nadu for helping to analyze photosynthetic parameters in the laboratory. The manuscript was written through the contributions of all authors
    corecore